
Toward Efficient Support for Multithreaded

MPI Communication

Pavan Balaji1, Darius Buntinas1, David Goodell1,
William Gropp2, and Rajeev Thakur1

1 Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL 60439, USA

2 Department of Computer Science,
University of Illinois, Urbana, IL, 61801, USA

Abstract. To make the most effective use of parallel machines that are
being built out of increasingly large multicore chips, researchers are ex-
ploring the use of programming models comprising a mixture of MPI and
threads. Such hybrid models require efficient support from an MPI imple-
mentation for MPI messages sent from multiple threads simultaneously.
In this paper, we explore the issues involved in designing such an im-
plementation. We present four approaches to building a fully thread-safe
MPI implementation, with decreasing levels of critical-section granular-
ity (from coarse-grain locks to fine-grain locks to lock-free operations)
and correspondingly increasing levels of complexity. We describe how
we have structured our implementation to support all four approaches
and enable one to be selected at build time. We present performance
results with a message-rate benchmark to demonstrate the performance
implications of the different approaches.

1 Introduction

Processor development is clearly heading to an era where chips comprising mul-
tiple processor cores (tens or even hundreds) are ubiquitous. As a result, parallel
systems are increasingly being built with multiple CPU cores on a single node,
all sharing memory, and the nodes themselves are connected by some kind of
interconnection network. On such systems, it is of course possible to run appli-
cations as pure MPI processes, one per core. However, as the total number of
processes gets very large, the local problem size per process in some applications
may decrease to a level where the program does not scale any further. Also, on
some systems, running multiple MPI processes per node may restrict the amount
of resources, such as TLB space or memory, available to each process. To allevi-
ate these problems, researchers are evaluating other programming models that
involve fewer MPI processes per node and use threads to exploit loop-level and
other parallelism. Such a hybrid model can be achieved by either explicitly writ-
ing a multithreaded MPI program, using say POSIX threads (Pthreads), or by
augmenting an MPI program with OpenMP directives [16]. In either case, MPI
functions could be called from multiple threads of a process.

MPI implementations have traditionally not provided highly tuned support
for multithreaded MPI communication. In fact, many implementations do not
even support thread safety. For example, the versions of the following MPI im-
plementations available at the time of this writing do not support thread safety:
Microsoft MPI, SiCortex MPI, NEC MPI, IBM MPI for Blue Gene/L, Cray
MPI for XT4, and Myricom’s MPICH2-MX. Other MPI implementations, such
as MPICH2, Open MPI, MVAPICH2, IBM MPI for Blue Gene/P and Power
systems, and Intel, HP, SGI, and SUN MPIs do support thread safety. With the
increasing use of threads, just supporting thread safety is not sufficient—efficient

support for multithreaded MPI is needed. Designing an efficient, thread-safe MPI
implementation is a nontrivial task. Several issues must be considered, as out-
lined in [6]. In this paper, we describe our efforts at improving the multithreaded
support in our MPI implementation, MPICH2 [10]. We present four approaches
to building a fully thread-safe MPI implementation, with decreasing levels of
critical-section granularity and correspondingly increasing levels of complexity.
We describe how we have structured our implementation to support all four ap-
proaches and enable one to be selected at build time. We present performance
results with a message-rate benchmark to demonstrate the performance impli-
cations of the different approaches.

Related Work The issue of efficiently supporting multithreaded MPI com-
munication has received only limited attention in the literature. In [6], we de-
scribed and analyzed what the MPI Standard says about thread safety and what
it implies for an implementation. We also presented an efficient multithreaded
algorithm for generating new context ids, which is required for creating new
communicators. Protopopov and Skjellum discuss a number of issues related to
threads and MPI, including a design for a thread-safe version of MPICH-1 [12,
13]. Plachetka describes a mechanism for making a thread-unsafe PVM or MPI
implementation quasi-thread-safe by adding an interrupt mechanism and two
functions to the implementation [11]. Garćıa et al. present MiMPI, a thread-
safe implementation of MPI [5]. TOMPI [3] and TMPI [14] are thread-based
MPI implementations, where each MPI rank is actually a thread. (Our paper
focuses on conventional MPI implementations where each MPI rank is a process
that itself may have multiple threads, all having the same rank.) USFMPI is
a multithreaded implementation of MPI that internally uses a separate thread
for communication [2]. A good discussion of the difficulty of programming with
threads in general is given in [8].

2 Thread Safety in MPI

For performance reasons, MPI defines four “levels” of thread safety [9] and allows
the user to indicate the level desired—the idea being that the implementation
need not incur the cost for a higher level of thread safety than the user needs.
The four levels of thread safety are as follows:

Thread 0 Thread 1

MPI_Recv(src=0) MPI_Send(dest=0)MPI_Recv(src=1) MPI_Send(dest=1)

Thread 0 Thread 1

Process 0 Process 1

Fig. 1. An implementation must ensure that this example never deadlocks for any
ordering of thread execution.

1. MPI THREAD SINGLE Each process has a single thread of execution.
2. MPI THREAD FUNNELED A process may be multithreaded, but only the thread

that initialized MPI may make MPI calls.
3. MPI THREAD SERIALIZED A process may be multithreaded, but only one

thread at a time may make MPI calls.
4. MPI THREAD MULTIPLEA process may be multithreaded, and multiple threads

may simultaneously call MPI functions (with a few restrictions mentioned
below).

MPI provides a function, MPI Init thread, by which the user can indicate the
level of thread support desired, and the implementation will return the level
supported. A portable program that does not call MPI Init thread should as-
sume that only MPI THREAD SINGLE is supported. This paper focuses on the
MPI THREAD MULTIPLE (fully multithreaded) case.

For MPI THREAD MULTIPLE, the MPI Standard specifies that when multiple
threads make MPI calls concurrently, the outcome will be as if the calls exe-
cuted sequentially in some (any) order. Also, blocking MPI calls will block only
the calling thread and will not prevent other threads from running or executing
MPI functions. (The example in Figure 1 must not deadlock for any ordering of
thread execution.) MPI also says that it is the user’s responsibility to prevent
races when threads in the same application post conflicting MPI calls. For ex-
ample, the user cannot call MPI Info set and MPI Info free on the same info

object concurrently from two threads of the same process; the user must ensure
that the MPI Info free is called only after MPI Info set returns on the other
thread. Similarly, the user must ensure that collective operations on the same
communicator, window, or file handle are correctly ordered among threads.

3 Choices of Critical-Section Granularity

To support multithreaded MPI communication, the implementation must pro-
tect certain data structures and portions of code from being accessed by multiple
threads simultaneously in order to avoid race conditions. A portion of code so
protected is called a critical section [4]. The granularity (size) of the critical sec-
tion and the exact mechanism used to implement the critical section can have
a significant impact on performance. In general, having smaller critical sections
allows more concurrency among threads but incurs the cost of frequently ac-
quiring and releasing the critical section. A critical section can be implemented

either by using mutex locks or in a lock-free manner by using assembly-level
atomic operations such as compare-and-swap or fetch-and-add [7]. Mutex locks
are comparatively expensive, whereas atomic operations are non-portable and
can make the code more complex.

We describe four approaches to the selection of critical-section granularity in
a thread-safe MPI implementation.

Global There is a single, global3 critical section that is held for the duration of
most MPI functions, except if the function is going to block on a network
operation. In that case, the critical section is released before blocking and
then reacquired after the network operation returns. A few MPI functions
have no thread-safety implications and hence have no critical section (e.g.,
MPI Wtime) [1, 6]. This is the simplest approach and is used in the past few
releases of MPICH2.

Brief Global There is a single, global critical section, but it is held only when
required. This approach permits concurrency between threads making MPI
calls, except when common internal data structures are being accessed. How-
ever, it is more difficult to implement than Global, because determining
where a critical section is needed, and where not, requires care.

Per Object There are separate critical sections for different objects and classes
of objects. For example, there may be a separate critical section for com-
munication to a particular process. This approach permits even more con-
currency between threads making MPI calls, particularly if the underlying
communication system supports concurrent communication to different pro-
cesses. Correspondingly, it requires even more care in implementing.

Lock Free Instead of critical sections, lock-free (or wait-free) synchronization
methods [7] are implemented by using atomic operations that exploit processor-
specific features. This approach offers the potential for improved performance
and greater concurrency. Complexity-wise, it is the hardest of the four.

To manage building and experimenting with these four options in MPICH2,
we have developed a set of abstractions built around named critical sections and
related concepts. These are implemented as compile-time macros, ensuring that
there is no extra overhead. Each section of code that requires atomic access to
shared data structures is enclosed in a begin/end of a named critical section. In
addition, the particular object (if relevant) is passed to the critical section. For
example,

MPIU_THREAD_CS_BEGIN(COMM,vc)

... code to access a virtual communication channel vc

MPIU_THREAD_CS_END(COMM,vc)

In the Global mode, there is an “ALLFUNC” (all functions) critical section,
and the other macros, such as the COMM one above, are defined to be empty so
that there is no extra overhead. In the Brief-Global mode, the ALLFUNC critical

3 Global here means global to all threads of a process.

Process

Thread

(a) Threads (b) Processes

Fig. 2. Illustration of test programs. Multiple threads or processes send messages to a
different single-threaded receiving process.

section is defined to be empty, and others, such as the above COMM critical section,
are defined to acquire and release a common, global mutex. The vc argument
to the macro is ignored in that case. In the Per-Object mode, the situation is
similar to that in Brief Global, except that instead of using a common, global
mutex, the critical-section macro uses a mutex that is part of the object passed
as the second argument of the macro.

For Lock Free, a different code path must be followed. To help with this
case, we have implemented a portable library of atomic operations (such as
compare-and-swap, test-and-set, fetch-and-add) that are implemented separately
for different architectures by using assembly-language instructions. By using
these atomic operations, we can replace many of the critical sections with lock-
free code. (This part of the code is still under development.)

4 Performance Experiments

To assess the performance of each granularity option, we wrote a test that mea-
sures the message rate achieved by n threads of a process sending to n single-
threaded receiving processes, as shown in Figure 2(a). The receiving processes
prepost 128 receives using MPI Irecv, send an acknowledgment to the sending
threads, and then wait for the receives to complete. After receiving the acknowl-
edgment, the threads of the sending process send 128 messages using MPI Send.
This process is repeated for 100,000 iterations. The acknowledgment message in
each iteration ensures that the receives are posted before the sends arrive, so that
there are no unexpected messages. The sending process calls MPI Init thread

with the thread level set to MPI THREAD MULTIPLE (even for runs with only one
thread, in order to show the overhead of providing thread safety). The message
rate is calculated as n/avg latency, where n is the number of sending threads or
processes, and avg latency is avg looptime/(niters∗128), where avg looptime is
the execution time of the entire iteration loop averaged over the sending threads.

To provide a baseline message rate, we also measured the message rate
achieved with separate processes (instead of threads) for sending. For this pur-
pose, we used a modified version of the test that uses multiple single-threaded
sending processes, as shown in Figure 2(b). The sending processes simply call
MPI Init, which sets the thread level to MPI THREAD SINGLE.

We performed three sets of experiments to measure the impact of critical-
section granularity. The first set does not perform any actual communication
(send to MPI PROC NULL), the second does blocking communication, and the third
does nonblocking communication.

The tests were run on a single Linux machine with two 2.6 GHz, quad-core
Intel Clovertown chips (total 8 cores), with our development version of MPICH2
in which the ch3:sock (TCP) channel was modified to incorporate the thread-
safety approaches described in this paper.

4.1 Performance with MPI PROC NULL

This test is intended to measure the threading overhead in the MPICH2 code in
the absence of any network communication. For this purpose, we use MPI PROC NULL

as the destination in MPI Send and as a source in MPI Irecv. In MPICH2, an
MPI_Send to MPI PROC NULL is handled at a layer above the device-specific code
and does not involve manipulation of any shared data structures.

Figure 3 shows the aggregate message rate of the sending threads or processes
as a function of the number of threads or processes. In the multiple-process
case, the message rate increases with the number of senders because there is
no contention for critical sections. In the multithreaded case with Brief Global,
the performance is almost identical to multiple processes because Brief Global
acquires critical sections only as needed, and in this case no critical section is
needed as there is no communication. With the Global mode, however, there is
a significant decline in message rate because, in this mode, a critical section is
acquired on entry to an MPI function, which serializes the accesses by different
threads.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4

M
e

s
s
a

g
e

 r
a

te
 (

M
M

P
S

)

Process or thread count

Processes
Global

Brief Global

Fig. 3. Message rate (in million messages per sec.) for a multithreaded process sending
to MPI PROC NULL with Global and Brief-Global granularities, compared to that with
multiple processes.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 1 2 3 4

M
e

s
s
a

g
e

 r
a

te
 (

M
M

P
S

)

Process or thread count

Processes
Global

Brief Global
Per Object

Fig. 4. Message rates with blocking sends for Global, Brief-Global, and Per-Object
granularities.

4.2 Performance with Blocking Sends

This test measures the performance when the communication path is exercised,
which requires critical sections to be acquired. The test measures the message
rate for zero-byte blocking sends. (Even for zero-byte sends, the implementation
must send the message envelope to the destination because the receives could
have been posted for a larger size.)

Figure 4 shows the results. Notice that because of the cost of communica-
tion, the overall message rate is considerably lower than with MPI PROC NULL. In
this test, even Brief Global performs as poorly as Global, because it acquires a
large critical section during communication, which dominates the overall time.
We then tried the Per-Object granularity, which demonstrated very good per-
formance (comparable to multiple processes), because the granularity of critical
sections in this case is per virtual channel (VC), rather than global. In MPICH2,
a VC is a data structure that holds all the state and information required for a
process to communicate with another process. Since each thread sends to a dif-
ferent process, they use separate VCs, and there is no contention for the critical
section.

4.3 Performance with Nonblocking Sends

When performing a blocking send for short messages, MPICH2 does not need
to allocate an MPI_Request object. For nonblocking sends, however, MPICH2
must allocate a request object to keep track of the progress of the communication
operation. Requests are allocated from a common pool of free requests, which
must be protected by a critical section. When a request is completed, it is freed
and returned to the common pool. As a result, the common request pool becomes
a source of critical-section contention.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 1 2 3 4

M
e

s
s
a

g
e

 r
a

te
 (

M
M

P
S

)

Process or thread count

Processes
Global

Brief Global
Per Object

Per Object tlp
Per Object tlp atom

Fig. 5. Message rates with nonblocking sends. “Per Object tlp” is the thread-local
request-pool optimization and “Per Object tlp atom” is the update of reference counts
using atomic assembly instructions.

Each request object also uses a reference count to determine when the opera-
tion is complete and when it is safe to free the object. Since any thread can cause
progress on communication, any thread can increment or decrement the reference
count. A critical section is therefore needed, which can become another source
of contention. All this makes it more difficult to minimize threading overhead in
nonblocking sends than blocking sends.

We modified the test program to use nonblocking sends and measured the
message rates. Figure 5 shows the results. Notice that the performance of Per-
Object granularity is significantly affected by the contention on the request pool,
and the message rate does not increase beyond more than two threads.

To reduce the contention on the common request pool, we experimented with
providing a local free pool for each thread. These thread-local pools are initially
empty. When a thread needs to allocate a request and its local pool is empty,
it will get it from the common pool. But when a request is freed, it is returned
to the thread’s local pool. The next time the thread needs a request, it will
allocate it from its local pool and avoid acquiring the critical section for the
common request pool. The graph labeled “Per Object tlp” in Figure 5 shows
that by adding the thread-local request pool, the message rate improves, but
only slightly. The contention for the reference-count updates still hurts.

To alleviate the reference-count contention, we modified MPICH2 to use
atomic assembly instructions for updating reference counts (instead of using a
mutex). The graph labeled “Per Object tlp atom” in Figure 5 shows that the
message rate improves even further with this optimization, and increases with
the number of threads. It is still less than in the multiple-process case, but some
performance degradation is to be expected with multithreading because critical
sections cannot be completely avoided.

5 Conclusions and Future Work

We have studied the problem of improving the multithreaded performance of
MPI implementations and presented several approaches to reduce the critical-
section granularity, which can impact performance significantly. Such optimiza-
tions, however, require careful implementation.

While it is clear that atomic use and update of the communication engine is
essential, it is equally important to ensure that all shared data structures, includ-
ing MPI datatypes, requests, and communicators, are updated in a thread-safe
way. For example, the reference-count updates used in most (if not all) MPI im-
plementations must be thread atomic. This is not just a theoretical requirement:
In some early experiments, we did not atomically update the reference counts,
assuming that the very small race condition would not affect the results; but, by
doing so, we regularly encountered failures in our communication-intensive tests.
This experience suggests that the quasi-thread-safe approach proposed by Pla-
chetka [11], in which only the access to the communication engine is serialized,
is not sufficient.

The abstractions we have employed to control critical-section granularity
are similar to what is required for transactional memory. We plan to use these
abstractions to explore the use of transactional memory.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract DE-
AC02-06CH11357. We thank Sameer Kumar and others in the MPI group at
IBM Research and IBM Rochester for discussions about efficient support for
thread safety in MPI.

References

1. Analysis of thread safety needs of MPI routines.
http://www.mcs.anl.gov/research/projects/mpich2/design/threadlist.htm.

2. Sadik G. Caglar, Gregory D. Benson, Qing Huang, and Cho-Wai Chu. USFMPI:
A multi-threaded implementation of MPI for Linux clusters. In Proceedings of the
IASTED Conference on Parallel and Distributed Computing and Systems, 2003.

3. Erik D. Demaine. A threads-only MPI implementation for the development of
parallel programs. In Proceedings of the 11th International Symposium on High
Performance Computing Systems, pages 153–163, July 1997.

4. E. W. Dijkstra. Solution of a problem in concurrent programming control. Com-
munications of the ACM, 8(9):569, September 1965.

5. Francisco Garćıa, Alejandro Calderón, and Jesús Carretero. MiMPI: A
multithread-safe implementation of MPI. In Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface, 6th European PVM/MPI Users’
Group Meeting, pages 207–214. Lecture Notes in Computer Science 1697, Springer,
September 1999.

6. William Gropp and Rajeev Thakur. Thread safety in an MPI implementation:
Requirements and analysis. Parallel Computing, 33(9):595–604, September 2007.

7. Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 11(1):124–149, January 1991.

8. Edward A. Lee. The problem with threads. Computer, 39(5):33–42, May 2006.
9. Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing In-

terface, July 1997. http://www.mpi-forum.org/docs/docs.html.
10. MPICH2. http://www.mcs.anl.gov/mpi/mpich2.
11. Tomas Plachetka. (Quasi-) thread-safe PVM and (quasi-) thread-safe MPI with-

out active polling. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface, 9th European PVM/MPI Users’ Group Meeting, pages 296–305.
Lecture Notes in Computer Science 2474, Springer, September 2002.

12. Boris V. Protopopov and Anthony Skjellum. A multithreaded message passing
interface (MPI) architecture: Performance and program issues. Journal of Parallel
and Distributed Computing, 61(4):449–466, April 2001.

13. Anthony Skjellum, Boris Protopopov, and Shane Hebert. A thread taxonomy for
MPI. In Proceedings of the 2nd MPI Developers Conference, pages 50–57, June
1996.

14. Hong Tang and Tao Yang. Optimizing threaded MPI execution on SMP clusters. In
Proceedings of the 15th ACM International Conference on Supercomputing, pages
381–392, June 2001.

15. Meng-Shiou Wu, Srinivas Aluru, and Ricky A. Kendall. Mixed mode matrix mul-
tiplication. In Proceedings of the IEEE International Conference on Cluster Com-
puting (Cluster 2002), pages 195–203, September 2002.

